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The paresns of initial bine IN§, —$,) that was removed was wesd as the eriterion. Overall, liness
regramios adjusiment on random empiss appesred suparios 10 the matohing methods, with linser regres-
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doses of radiation on uranium mine workers. Also, as in these examples, one might
have to wait many years for the results of an oxperiment while relevant observational
data might be at hand. Hence, sithough inferior to an equivalent experiment, an
observational study may be superior to or useful in conjunction with & marginally
relevant experiment (e.g. one on the long-term effects of radiation on white rats).
In addition, the analysis of data from obeervational studies can be useful in isolating
those treatmenta that appesr to be successful and thus worth further investigation by
experimentation, as when studying special teaching methods for underprivileged
children.

In dealing with the presence of confounding variables, & basic step in plaaning
an observational study is to list the major confounding variables, design the study
to record them, and find some method of removing or reducing the biases that they
may cause. In addition, it is useful to speculate about the size and direction of any
remaining biss when summarizing the evidence on any differential offects of the
treatments. '

There are two principal strategies for reducing biss in observational studies.
In matching or matched sampling, the samples are drawn from the populstions in
such a way that the distributions of the confounding variables are similar in some
respects in the samples. Alternatively, random samples may be drawn, the estimates
of the treatment being adjusted by means of & model relating the dependent variable
y to the confounding variable z. When y and z are continuous, this model usually
involves the regression of y on 2. A third strategy is to control biss due to the z-vari-
ables by both matched sampling and statistical adjustment. Notioe that the statisti-
cal adjustment is performed after all the data are collected, while matched sampling
can take place before the dependent variable is recorded.

This peper reviews work on the effectiveness of matching and statistiocal ad-
justments in reducing bias in a dependent variable y and two populations P, and P,
defined by exposure to two trestments. Here, the objective is to estimate the dif-
ference (1, —~7,) between the average effects of the treatments on y.

Section 2 reviews work on the ability of linear regression adjustment and three
matching methods to reduce the bias due to 2 in the simplest case when both y and =
are continuous, there are parallel linear regressions in both populations, and z is the
only confounding variable. Seotion 3 considers complications to this simple case :
non-parallel regressions, non-linear regressions, errors of measurement in z, and the
effect of an omitted confounding veriable. Bection 4 extends the above cases to in-
clude z categorical or madecategorical (e.g. low, medium, high). Section § presents
some multivariate r results which are simple generalizations of the univariate z results.
Section 6 considers some multivariste extensions of matching methods. A brief
summary of the results and indications for further research are given in Section 7.
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3. ¥, % CONTINTUOUS : UNIVARIATE PARALLEL LINEAR SNGRESSIONS
2.1. The model. We begin with the simple case when y and & univariste

z are both continnous, and the regressions of y on = are linear and perallel in both .

populations. For the j-th observation from population s, E.Bogav«voilﬂ.!
Yy = p+Aey—wm) ey e (81.1)

with “ Bloylzy) = 0, Ejlzy) = of

g?ﬁiﬂa&oganﬁniiw?uougﬁirloc-Va-
without loss of generality. Thus the regressions of y cn % differ by the constant
Yy ry = 2y) = Sltbl\ﬁl: St e A .1.2)

a—ooﬂﬂug—a?ﬁngﬂoﬂv;’ rﬂoot i%mﬁﬂ.—g
m?_ﬂpronlemqvﬁbg.ﬁusoniﬁo?ﬂﬁ? 4’@.?&.

the treatments, 7,—7,. Thus, Eprril the treatment &QIJEUE (2.1.2) is con-
stant st any level of ». BT .

From (3.1.1) { no_riig@gw oro Lﬁ.&u&!lﬂu&lai

either randomly or solely on = N . o

_ B —a) = (= )+ A — )~ Mer s

= T~ Ty H B —3). - (313)
Lotting F, be the expectation over the distzibution of verisbles in randoin samples,
B, — ) = py—pym=ry— 23+ Sl —%) N B

" 80 that the ¢ expected biss in (§,—f,) from random samples is Ay, —1y).

2.3. Linear regression adjustment. Since from (3.1.3) §,—9, is conditionally
Er«-ﬁg A2, ~2,) o random and matehed samples, it is reasonable to
adjust 9, —g, by subtracting an estimate of the biss. The adjusted estimate would

then be
=Ty 2= (-G —Bisy— ).

In practics, A is gsgégggé&pﬂmf%
With this model, however, B,(8) = u%??%ms?ugg
sample 1 or sample 2 alone. From (3.1.3) for any of these B,

By(#—1y = }lx...n?lé » T, —Ty.

. For this model, the regression adjustment removes all the bias cither for random samples

oe for matched samples seleoted solely weing =.

gg%i-&i%.?ﬁéﬁig
himeelf that the regressions of y on & in the two populations apposr linear and parsllel.
Standard methods of fitting higher order tarms in z-and soparate A's in the two samples

° ave appropriate for helping to answer this question.
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In presenting resuita onthomtndm:ubufoc:md(‘l’lbk
2.3.1), we have taken :

o = avioTT D2

where a = 0.2(0.2)1.0. Striotly, the results hold for B < 0.5 but for B between
0.5 and 1, the percent reductions are only about 1 to 1{% lower than the figures shown.

TABLE 23.1. PERCENT REDUCTION IN BIAS OF s FOR CALIPER
MATOHING TO WITHIN +eV(si+ely2 WITH s NORMAL

s e} ol=l otiof =3

o.s .”» ry "

0.4 N .8 8

Y -0 o R a8 -
0.8 .08 .. "

1.0 . 4 .8

Aﬁghtm&bing(cao.z)movumudodlyd!thobhl. while a loose matching
(6 = 1.0) removes around 76%. The ratio offel has & minor effect, dthoughpu-
formanoce is somewhat poorer as of/of inoreasce.

A dissdvantage of caliper matohing in practical use is that uniess r is quite
large there is & non-negligible probebility that some of the desired » matches are not
found in the ressrvoir. Nothing seems to be known about the distribution of the number
of matches found sa a fanotion of 7, 6, (y,~¥s) and of/o}. We have not investigated
the consequences of incomplete matohing as often results in practice. Thus we have
no help to give the investigator in estimating the reservoir sise needed and the prob-

able percent success in finding osliper matches.

2.4. 'Nearest aveilable’ maiching. 'I'hudhdmugouavmdndbyumothod
(Rubin, 1973s), in Which &lI"W Dair matches are cesily formed by computer. The n
values of = from ssmple 1 and the rs values from reservoir 2 are entered in the computer.
In one variant of the method, the sample 1 values of z are first arranged in random
ovdor from 2y, t0 z,,. Starting with z,;, the computer sclects the value 2, in reservoir
2 neareet t0 2;; and lays this peir aside. The computer next seeks » ‘nearest avail-
able’ pertoer for z,, from the (rm—1) remaining in resesvoir 3, n.ndnoon.cothatn
mmmdnnﬁunddthonghmvﬁmofaunotmﬁdkd

Two other varienta of this ‘nesrest available’ method were examined. In
thaee; tbcmmbmofumphlm(x;ﬂﬂtmbd&omhgh-ttobm (ii) firet
ranked from lowest to highest, before Wmtohufmmuhrmhdnnplq. E PG
ﬂ,>1.lontecuhmlhmhzmdihowodmtforthpumﬁmdwﬂm
0 in biss of (2,—2,), Oy > Open > Onr. If, however, the quality of the matches is




SANKHYX : THE INDIAN JOURNAL OF STATISTICS : Sxarxs A

judged by the average MSE within pairs, Eu(2,5~2y), the order of performance was
opposite . MSE,. < MSE,,, < MSE_ 4. Both sets of results have rational expla-
nations. The differences in performance were ususily small. On balance, random
ordering i a reasonable compromise as well as quickest for the computer.

For random ordering, Table 2.4.1 shows the percent reductions in bias of
(2,—2;) and hence of (§,—¥,) for r = 2, 3, 4, n = 25, 50 and different combinations
of the initial bias B and thc o}fof ratio. Results for n = 100 (not shown) differ
by at most one or two percentage points from those for n = 50, suggesting that the
% = 50 results hold also for » > 50. With this method, the percent reduction in
bias decreases steadily as the biss B increases from 1/4 t0 1, so that results are given
separately for the four values of B.

As regards the effect of o}/o}, mstohing does best when /o] = § snd worst
when of/of = 2. This is not surprising. Since 5, > 7, the high values of sample
1 (the ones most likely to cause residual bias) will receive less biased partners when
o} > ot '

The investigator planning to use ‘nearest avsilable' matching can estimate
B and of/o} from the initial date on z. Knowing the value of r, he can estimate
the oxpected percent reduction in bias under.s linear regression from Table 2.4.1.

TABLE 2.4.1. PERCENT REDUCTION IN BIAS FOR RANDOM ORDER,
NEAREST AVAILABLE MATCHING: x NORMAL

olfod = ¢ allo’ =1 oflog = 2

1 1 3 1 1 3 1 1 3
B o ! " - - - . 1

N 3 2 g 1! ‘ i 4 ! Pl
" 2 97 94 89 W 87 82 15 08 63 00 56 48
'“' 3 99 o9 97 93 4 091 S8 sl M 12 81 &
LY 99 99 99 97 (1] 98 92 38 81 ] 70 (1]
S 2 99 w8 93 s4- 92 87 18 69 66 G0 63 5l
13 100 L) 09 97 96 98 01 54 79 78 a9 a3

[ ]

100 100 100 Y9 8 YT 94 89 % 81 5 1

A messure has also been construoted (Rubin, 1973a) of the olosences or quality
of the individual pair matches. If pairing were cntirely at random, we would have
Eu(zyy—zy) = (et +03)+(m—19)?
= (0§+03)(1+ B*f2).
Consequently the quantity ,
100K g (ity— 2e9)*/(0} +0B)(1+ BY/2)
422
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was chosen as the messure. Since results v.ryhuhw‘lﬂlu,onlythoctots-w
ave shown in Tuble 3.4.3.

TABLE 2.4.3. VALUES OF 100Bua(zy ~3y)Net+of)(14 8%3) FOR NEAREST
AVAILABLE RANDOM ORDER MATOHING WITH ¢ NORMAL

el = ot =t otief = 3

1 3

T 1

13 %20 2
s 13 18
5 o 13

NB =

[ '™

18
i

»
® 0 o =)o
® ©
© © el s
~- -
-
e e a3 M-
w » o oe
®» . 2] ales

Except for o}/of = 2 and B > {, rendom ordering gives good quality matohes.
In fact, sinoe the computer program (Rabin, 197%) for constructing the matched
palrs is very speady, the investigator oan try random, high-low, and low-high ordering.
Byonmima‘(:,—z.)mdz(su—sﬁ)’[aﬁtwhmdmd,hmnbotwht appears
to him the best of the three approaches. .

2.5, Hmadohng memwmwhohmhmudmmmtdung
anduoonﬁdenn.httbomgredonhlhﬂ s mean-matching method which conocen-
trates on making |2,~2,| small haa been disonssed (Greenberg, 1953). The following
simple computer method has been investigated (Rubin, 1978). Caloulste Z,. Select,
from reservoir 3, the @, clossst to 2,, then the m, such that (3 -24,)/2 is closest to
2y md-oonunﬁluhavebomnloohd. For n = 80, Table 2.5.1 shows the percent
reductions in bias obtained.

TABLE 3.8.1. PERCENT REDUCTION IN BIAS FOR MEAN MATCHING :

2z RORMAL
ofiol = § offof = | ofislm 2
1 1 2 1 1 [ ) | 3
\e= ¢+ 3 3 ' 9 3 3 ' T 3 3 !
2 100 100 9% o7 100 % [} ‘ ™ 108 o8 ) ] a7
2 100 100 100 100 100 100 99 08 100 100 #1 &8

4 100 100 100 100 100 100 100 100 100 100 100 *»

Except in a fow dificult casss, particularly B = 1, this method of mean match-
ing removes essentially all the biss. So far asa we know, mesn matching in seldom
used, presumably beosuse it relies heavily on the assumption that the regression is
_linear. With & monotone non-linear regression of y on 3, one might speculate that mean
muchhgahouldpufmmmugh.yumﬂuuurwnm.djutmmtonrmdom
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samples. But with the regression adjustment, one can oxsmine the relations between
y and z in the two samples before deciding whether a linear or non-linear regression
adjustment is appropriate, whereas with mean matching performed before y has been

observed, one is committed to the assumption of linearity, at least when matching the
samples

- 3. (COMPLICATIONS
3.0, Regressioms linear hut not parallel. For i = 1,2, the model becomes

- - - yo = M1+ Be(xig—n0) +ey. .. (3.1
It follows that for a given level of z,
Bl = oy = 9| = moh BB =i, 312

If this quantity is interpreted as measuring the diffecence in the effects of the two
treatments for given z, this difference appears to have a linear regression on x. At
this point the question arises whether a differential treatment effect with z is a resson-
able interpretation or whether the (#,—/.) difference is at least partly due to other
characteristics (¢.g., effect of omitted z-variables) in which the two populations differ.
With samples from two populations treated differently, we do not see how this ques-
tion can be settled on statistical evidence alone. With one study population P, and
two control populations P,, P, both subject to 7, a finding that B, and B; agree
closely but differ from B, leans in favour of suggosting a differential effect of (v;—7,).

As it happens, assuming z is the only confounding variable, this issue becomes
less crucial if the.goal is to estimate the average (r, —7,) difference over population 1.

1 -1e-goa’ 18
From (3.1.2) this quantity is

E\(T,~Ts) = (fty—1tg) —Ba(My— 1) e (3.1.3)
Since from random samples,
Elyy—9s) = py—na e (3.1.4)

the initial bias is f(9,—»,). With sninples matched to a random 2,,
. Em(gi~F2) = py—pta—rEm(Ze)+ F.02
so that the reduction in bias is
Er(§i—Fs)— Em(G1— 1) = Bo(Em(Ze)—1]-
Hence the percent reduction in bias due to matching remains, as before,
100{ Em(rs)— M)/ (11— )
80 that previous results for ‘mn.tchiug apply to non-paralle] lines also with this estimand.
As regards regression adjustment, it follows from (3.1.3) and (3.1.4) that
Eol(§.— 72)—Bal2,—23)) = (a~ta)—Falmi—13) = By(ry—75).
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‘Consoquently, in spplying the regression sdjustment to random samples,
use of the regression coefficient caloulated from sample 3 provides an unbiased eeti-
mate of the desired B,(r,—7,). This property was noted by Petars (1941), while
Belaon (1966) recommended the use of A in compering listeners (P,) with non-listeners
(P,) to » BBC television program designed to tesch useful French words and phrasee
to prospective tourists.

" With K,(r,—7,) as the objectivo, the standard use of the pooled B, in the
regression adjustment gives bissed estimates, though Rabin (1970) has shown that
‘nearest availsble’ matching followed by regression adjustment greatly reduces this
bias. With matched samples, the standard estimate of 2, following the analysis
of covariance in & two-way table, is ¢, the sample regression of matched pair differ-
enoes, (§ys—Yey) ON (Zy—2y). Curiously, the Monte Carlo computations show that
use of B on matched samples performa better than use of B¢ in this case.

If non-paraliclism is interpreted as dve to a (r,—7,) difference varying lineacly
with z, the question whether F,(r,~—7,) is the quantity to estimate deserves scrious
conaideration. To take a practice sometimes followed in vital statistics, we might
wish to estimete (7,—7,) averaged over & standard population that has mean y, dif-
fering from 4, and 3,. The estimend bpcomes, from (3.1.2)

Bulr,—70) = py— g+ B(—1) —Bulte—1)-
From random samples, an unbissed regression estimate is
(a— o) +Palna—2)—Bylma—2,) e (3L5)

where B, and B, are the usual lsast squarcs estimates from the separate regressions
in the two samplea.

Alternatively, particularly if 8, and 8, differ substantially, no single average
of (1,—7,) may be of interest, but rather the values of (r,—7,) at each of a range of
values of z. As o guids in forming & judgement whether use of & single average dif-
ference is adequate for practical application, Rubin (1970) has suggested the following.
Suppose that in the range of interest, z lics between z, and z5. From (3.1.2) the
estimated difference in (7, —7,) at these two extremes is

(A, —B)xm—=z). e (3.0.8)
From (3.1.5), the average (;—;) over the range from x; 10 zy is estimated as
(F1~Fa)+P\(2~2,)-Aym—2,) where 1 = (2+2m)2. e (3.7

The ratio of (3.1.6) to (3.1.7) provides some guidance on the proportional error in using
simply thisa average difference.
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If it is decided not to use the average difference, tho differences (r,—7,) for
specified x can be estimated by standard methods from the separate regressions of
y on z in the two samples.

To examine the relation between (7, —7,) and z from pair-matched samples,

it is natural to look at the regression of (y,y—yy) on 2.5 = (z,y+7y)/2. However,
from the models (3.1.1) it turns out that

E{ly1—yy)m |Z § = 2} = (s —12)— B +Betts+ (Pr—Bo)2.9+ (8,4 Bo)E(dy | 2.4 = x)

where d; = (z,—zy)/2. With 5, # 94 or o} 7 o, it appears that E(dy|2., = z) # 0,
8o that this method doee not estimate the relation (3.1.2) without bias. The bias should
be unimportant with tight metching, but would require Monte Carlo investigation.

3.2.  Regression non-linear. Comparison of the performance of pair-mstching
with linear regression adjustment is of great interest here, sinoe this is the situation
in which, intuitively, psir-matching rasy be expected to be superior. Use of both
weapons—linear regression on matched samples—is also relevant.

Monte Carlo comparisons were made, (Rubin, 1973b), for the monotonic non-
linear functions y = e£ % and ¢*® and the random order nearest available matching
raethod described earlier in Section 2.4. In such studies it is hard to convey to the
reader an idea of the amount of non-linearity present. One measure will be quoted.
For convenience, the Monte Carlo work was done with 3, +%, = 0 and (¢} +0})/2= 1.
Thus in the averago population, z is N(0, 1). In this population the percent of the
variance of y = ¢*** that is attributable to its linear component of regression on z ia
lOOa'/(e"'—l). For a = & }, & 1, respectively, 129% and 41% of the variance of
¥ are not attributable to the linear component. From this viewpoint, y = ¢*% might
be called moderately and y = ¢*#* markedly non-linear.

With regression sdjustments on random samples, the regression coefficient
used in the results presented here is A, the pooled within-samples estimate. With
regression adjustments on mstched samples, the results are for B4, 88 would be custo-
mary in practice. Rubin (1973b) has investigated use of B,, B,, By and B¢ in both
situations. He found By in the unmatched case and B4 in the matched oase to be on
the whole the best choicea.

The results were found to depend markedly on the ratio of/o;. Table
3.2.1 presents percent reductions in bias for o}fof = 1, the simplest and possibly
the most common case. Linear regression on random samples performs admirably,
with only a trifling over-adjustment for y = e*#. Matohing is inferior, particularly
for B > §, even with a reservoir of size 4n from which to seek matches. Linear
regression on matched samples does about as well as linear regression on ran-.om
samples. Results are for A = 50.

Twming to the case o}/cf = % in which better matches can be obtained,
10te first that linear regression on random samples gives wildly erratic results which
call for a rationsl explanation, sometimes markedly overcorrecting or even (with
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B »= }§ for ¢5) greatly inareasing the ‘original biss.¢ Matching alone does well, ou the
aversge about as well as with o linear relation (Table 3.4.1) when of/o} = §. Linear
regrossion on matched semples is highly affective, being slightly better than matohing
alome.

TARLE 24.]. PRROENT REDUCTION IN BIAS OF yietiwl = 1);
s NORMAL

.- e e l- % ....'......_-.-......_'- ;

method® ¢ o g @ o, et g e

—
2 ~ 100 100 101 161 e o 100 108
M T 85 N O™ 16 U % &
3 90 100 MW 1M B W T 10
s % 101 8T 100 03 W M 100
BM $ s 108 100 108 1 10 108 108
3 100 101 100 100 100 160 108 101
4 100 101 160 o8 160 100 1 101

F I % b=
msthod r B ool o g os gon g ¥
B 01 101 106 106 168 108 108 108
» 1 I 8 B »
3 81 W e » 70 o & 07
4 872 - 7% 100 ™ 8 & »
BM S 108 % 10 100 14 9% u3
S 108 8 108 1000 108 100 100 100
4 101 100 108 100 108 100 100 99

)] dmﬁmn‘mwamwm
M denctes ‘nearest avellable’ matehing.
RM deactes Knewr regression adjusiment on medehed semples ().
“The most extrems results foflow from the natre of the fanetion s:e. Oomsider o*. Its memn
valwe in popaletioa i is 1M, Pe2=l vithy=] me -l ‘.ﬂ-,.umm

in y 18 nagakos. Simee y; > 7y and 2, U positive, 1he regression adjustment grestly ineressvs this
mmm-mxm For B = {, \hs initia) biss is positive but anall, so thet regression

greadly overeorteots, giviag 3039 redusiion. r«a-z.x.u-mwuu- are larger snd the over-
Mmtnmumg, 139%). .
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With o}/o} = 2 (Table 3.2.3), lincar regremsion alone performs just ws errati-
cally as with o}/of = §, the results being in fact the usme if % is replaced by e-**.
As expected from the resuits in SBection 2.3, matching alone is poor. In most cases,
regression on matched samples is satisfactory, oxcept for failures with ¢~*/t and e~*
when B = } or }.

TABLE 3.2.3. PERCENT REDUCTION IN BIAS OF y
(02jo3 = §, THE BASIER CASE FOR MATCHING); s NORMAL

= -

mthod ¢ A eIm o e o8 cem e os
X M 63 -0¢ 48 1 0 298 78
M 3 85 99 108 100 % 00 03 9
a 99 100 103 100 80 100 ¢ 100

¢ % 100 108 100 ® 100 97 100

RM 2 102 100 98 100 10 100 108 100
3 100 100 100 100 100 100 101 1Iol

4 100 100 100 100 100 100 100 100

B .: B=1

maethod r A% gel g i ®n A s e
R 133 90 170 88 113 96 138 102
M 2 89 96 85 08 78 9l 60 08
3 97 100 ¢ 100 4 98 0 09

1 9 10 97 100 97 99 W 1w

AN 2 w3 9% 18 100 105 99 118 99
3 100 100 103 100 9 99 106 100

4 100 101 101 100 100 100 102 100

3.3. Regressions parallel bwt gquadratic. Some further insight into the per-
formances of these methods is obtained by considering the model
* W= Thfry+ eyt tey. v (3.3.1)
It followa that
Ee(§i—§s) = (1,—Ta)+B(®— 2o} +5(2}— 2]+ 8o} —of) .. (33.2)

where sf = I (zyy—2()*/n. Hence the initisl bias in random samples is, unoondi-
tionally, *
(M —n3)[ B+ 8(my+ 1)} +8(03—03) . (3.3.3)
= (1 —n)f+8ai—03) v (3.3.4)
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' TADLS .5.38. FERCGENT REDUOTION IN BIAS OF ¥y .
(c-m.‘s,maummnmumon « WORMAL

-
=g . -3
mthol ¢ BB e g o0 P g g
B G 8 B-04 N 14 1T M
Y T & I W—-0 & 81 % 139
1 6 10 H-@ “® 8 4 18
A 4 M s 1 W x 8
M 877 ';0 1M “w-o d00: It 100 m
.8 W 1 -3 100 108 106 7 :
¢ 8 10 - 5 10 107 104168
o ) 0"' ] L3N B . 1
B=7 B=1 .
method r @R R e on gon o o
R %0 133. 88 170 88 113 108 1w
. M ! » B =B oW NN 8
3 8 8 ®» 8 4 " n n
R S 46 & W 4 100 ® 8 n %
" RM 2 108 108 1% 118 100 09 187 10¢
S 8 108 108 i1 tis 108 100 us 108
¢ WS W1 Ul 97 108 89 110 1es

where without loss of generslity we hnnnmdq‘+'q.=0:

Even though y, > 9,, if > 0 (as appropriate for the positive exponential funation)
(3.3.4) shows that if o} < o}, the initial bias might be small or even negative. This
may indicate why some erratic results appoar in the parcent reduction in biss with non-
linsar funotions.

¥rom (3.3.3), the remaining bias in matohed ssmples is '
(1g—'-('.))lﬁ+‘(ﬁ+'-('a))]-H{d—l-(lf)} . (3.3.5)
mmwthmummphmmmm The
ﬂuttcmmmhthtinthhwthmtnduﬁmm&nnhwﬂawh
that for parallel-lincar regressions if [3/4] is amall. For example, lot of ~of = 1
sad @ bo the peroent reduction in bias for y linear. From (3.3.4) and (3.3.5), the

peroent reduction in biss for y quedratic works out spproximately ss

~(100-8) 5 v~ Buie] = 8 1 (1~555) B).
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For regruuou udnnted uum.m on random umplu E(f;) msy be

expressed as

e | cn— —— .+ £ - > - = ——— | —— - )

where Ly = Zfxy—2()*/n is the umgle third momcnt From (3.3.2) it follows that

the residusl biss in the regression adjusted estimate on random ssmples is ocondi-
tionally .
= Ecl(§,— §2)—Ba(®—29)]—(1y—14)
= =+, 2) [+ 2a— A | e, sl e
For a symmetsio or near-symmetrio distribution of = in both populations the third
term becomes unimporteut. The first two terms give
T Sl —am— )]

e e bt > —  ———— e —— ¢

The average residual bias in large random se umplu after rogreouon sd;ultmont is there-
fore, for x symmetnc md (c'+o'l)[2 -],

- . yot—ob (x- —‘—’-"2'-)

- e -

This formula auggeota ss we found for e24%, that with & uymmetric 2 and o} = of,
linear regression adjustment in random samples should remove essentially all the bias
when the relation between y and z can be spproximated by a quadratic function.
The further indication that with o} s of the residual bias is smaller abeclutely as
71—, increases towards 1 is at first sight pussling, but consistent, for example, with
the Monte Carlo results for e*/? and ¢ when o}/of = 2 in Table 3.2.3.

__To aummarize for the exponential and quadratio relationships : If it appears
that of = o and » is symmetric (points that can be checked from initial data on
z) linear regression adjustment on random samples removes all or nearly all the bias.
Pair matching alone iv infecior. Generslly, regression adjustment on pair-matched
samples is much the beet performer, although sometimes failing in extreme cases.
An explanation for this result is given in Rubin (1973b) but is not summarized here
because it is quite involved. Further work on adjustment by quadratic regression,

on other curvilinear rel“atione. sud on the cases o"/c‘ - 2 —;— would be informative.

Before leunug the problom of non-h.noa.r regressions, we indicate how the above
results-¢an be extended to non-linear response surfaces other than guadratic. Let

, vy = 1t g(Ey)tey
where g( ) is tbe regression surface. Since By may be written as Ez(yq—yd(ag-z«)/
EZ(zq-—i‘;)- the limit of B, in large random samples is
(covy(x, g(x))+ vovy(z, g(x))])/[var,(z) - ver,(z)]
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whero covq and var; are the covariances and varfances in population . Bunodn
rapudonud;mtaduﬁmhmhgonndotnuﬁphhnlimﬁqu

E\(gt=))— Ey(g(z))— (1, —na{00v, (=, g(z))-+cov(e, 1(0))11["':(‘)4-"#)1:

mqmﬁtyowbouhnhudnmlyﬁanyﬁrmydhﬁbnﬁommdm
surfaces g( - ), (o.g., normal distributions and exponential g( - )). In addition, if ¢ is
expanded in & Taylor secies, the residual biss in random or matched samples may be
wmmdmmhofcmrnndonndmmdnuﬂ-. :

t XN Enwco[mmz Inthknoﬁonw-umﬂptyhuﬂn
-mumrnﬂodmmﬁomwmwudz(mtyX)hmmhﬁéu :
Mtwmhhgmwdfmgcumm'ﬂwbsmzq-xc
+Uu.whﬂvtqhmmofmt. Alin&oﬁmﬂthomoddh )

w-mﬂx«—mww " e Tredin (3.4)

(32 "' PRI

mmwwmg,—mhmnﬂuhuwmm,;w Ay

To cover situations that srise in prastice-it is desirable to allow (i) uy and
thbmd.bd.snd(n)u,toboabh-dmﬂ'iﬂ:&(m) m#o
A diffoulty arises at this point. Even undet more restriokive assumptions (uy, X
indepsndent in. & given population and Fi{uy) = 0), Lindley (1947) showed that the
regression of gy on 2y is not linear unless the cumulant genscating funetion .of the
1y ia » multiple of that of the Xy. Lindley’s resulta can be extended to give corres-
ponding conditions when the wy, X¢.are correlated. For simplicity we assume thst
Mm&dm&wmm

e

mmwdymm&mw"muwﬂm ,

S ﬂ!"ﬁH"(ﬂl"ﬂ"ﬂH‘d] PR f!:, \ -.u.;'
with (s} |2s) = 0. Hemos, from (3.41), .0 o0
B i i

.. . - R R HE L LS PYSES B Y S 3

TEND

Unless cov(uX)< —o, we have |£°] < | 2], the slope of ‘the line bemg dnnped
towsrda sero. mmlhmﬂeﬁmzzhﬂymtmmdmﬂmamph
matched on @ & regression-adjusted estimate §,—f,—B°(2,—8,), where B8° is o lomst
squares estimate of the regression of y on. the fallible x, ehanges the initial biss of
§,—#s by the smount '

I P R PO T PYRNAPTU L AT RN TS T T

P

. "ﬂ‘(ﬂx-h""ﬂ'”ﬂ)

e .
&noethomﬁdbmofﬁ—g,innndnmmphuﬂ(q‘—q,).thhh.qqf_qw
adjutode-ﬁmshu L wd L.

B )(1:-1-)-—"(':—":)
The last term on the right shows that- binsed messurements osn make an
pdditional contribution (+-or —) té-the: residual, hise, : *This contribution disappears

a)
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if the messurement biss is the same in both populations, v; = v,. Under this condi-
tion the pecoent reduction in bias due to the regression adjustment is 1004°/8. With
the same condition, the percent reduction in biss of (§,~y,) due to matohing on z is"
easily seen to be

| Q;mx.'.@,' )=ny]
. (W—m) |
Thus with this simple model for errors of measurement in X, their effects on
matching and adjustment sre similar—namely to multiply the expected percent
reduction in bias by the ratio 4°/8, weually less than 1. With 4, X uncorrelated,

this ratio is the quantity o} /o3 often called the reliability of the measurement z (Kendall
and Buokland, 1971).. :

If this reliability, say (1 -{-«')‘l is known, it can bo used to inflate the regres-
sion adjustment to have expectation ﬁ(q‘—q,), ((bohn.n 1968b). Thus form the
“‘corrected' regremsion adjusted cetimate B Feo

i~y —(1+aMB°(2,—2,),
which is unbiased for 7,~75 under this model. S . .
In simple éxamples in which Lindley's conditions are not satisfied, Cochren
(1970) found the regression of y an the fallible = to be mounotone but curved. A thorough

inveatigation of the effects of errors of measuroment would have to attack this case
‘b‘ . . . : T o BTN )

3.8. WOm of the most common ecriticisms of
the conclusions drawn {fom an observational atudy is that they are erroneous because
the investigator failed to adjust or match for another confounding variable 2y that
affects y. He may have been unaware of it, or failed to measure it, or guessed that
ita effeot would be negligible. Even under simple models, however, investigation

of the effects of such s varisble on the initia] bias and on the performance of regreasion

and matching leads to no crisp conclusion that either rebuts or confirma this criticism
in sy generality.

We assume that gy has the same linear regression on zy and z(; in both popu-
lations, namely

Yy - pc+ﬂ(=q—qc)+r(zu—vc)+m- e (3.8.1)
Henoce, assuming z and z are the only confounding variables,
7y~Ty = Elyy—yu |2y = 24, 2,5 = 29g) = (My—pta)—BINM—T0)— ‘)’("x““’:)
and the initial bias i in (g,—g,) from random samples is now
B =)+Y0r—). e (38.2)
Similarly, the bias in (§, ~¢,) from samples matohed on z is
B9y — Eu(2y))+Y(vy—Eu(hy)).
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Thus, depeading on the signs of the parameters invoived, the presance of s in the model
may ecither increase or decresse (perhaps to an unimportant amouns) the previous initial
bias A(y,—7,). Also, oven if |y, —1s| > |9, —Ba(®)] and |v,—9| > |v,—Eu(t)],
the bias of (§j,—§,) may be greater in matohed than random ssmples.

Suppose now that z(s bas linear snd parellel regressions on zy in the two popu-
lations : ) :

A w4 Ay I...v+ .. (3.8.3)
Then (3.5.1) Bu« be written _ .
Y !+€+§xuel._ )+ tyt+ey. : - (3.5.4)

In (3.5.4) we have returned to the model in Bection 3.2 —ssme linear regression of
y on z in both populations. From Section 2.1, the expeoted change in biss of (§, —f,)
?8?-&%«3 533&3%885%28&&8»?

T L A ) e (3.8.5)

.éﬁ.l... mﬁosgsaos zis

S (A4 Bt —v). . (3.5.6)
o ?aap_a.aﬁ.l—ousosoumﬁ:sr&s%%z! .
e e 9% bl.kcpl.a.m_ .- (8.5.7)

: ﬁ—ﬁ.-&gnoﬂ p_ononogﬂﬁo?l :roonm-a.;isasng z that

s attributable to the linear regression of s om z. If s has identical linear regrossions
on z in both populations, eo that (v,—Aw,) = (v;—A%,), the residual bias is sero as
ianﬂvoonmong With matching in this situation, the residual bias is

(B+7A) 9y — Bu(2y)]
- matohing buing lees effective than regreasion.

With regressions of z oo = parallel but not identioal, the final bias with either
regreasion or matohing could be numerioally larger than the initial bias, and no simple -

statement al gﬂeegiﬁoﬁg EEEE%E—
model.

E_szﬁaiﬂ.&x.%u:siir;gusg investigation aiows
that in large samples, regression and matohing g&o?&&.gﬁ?%
z that is attributable to the linear component of the regression of z on =

" ¢ MATONING AND ADSUSTMENT BY S§OUDCLASSIFICATION

40. The two mahods. When the z-variable ia qualitetive, o.g. sax (M, F),
it is natural {0 regard any male from popuistion 1 as & match for any male from popu-
lation 2 with respect t0 2, or more generally, any two members who fall in the same
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qualitative class as a matoh. This method is also used frequently when z is oontin-
uous, o.g. nge. We first divide the range of ages that are of interest into, say, speci-
fied 5-year classes 40-44, 45-49, oto. and regard any two persons in the same age class
as & match.

In matching to the sample from population 1, let »,5 be the number in sample
1 who fgumth subclass. From the reservoir from population 2, we seek the
same number ny = n,y in the j-th class. The average matched-pair difference,
En, (fu—-yu)/nmum the difference (g, —y,) between the two matohed sample
means, this method being self-weighting.

With random samples from the two populations, the alternstive method of
adjustment by subclasmification starts by clamifying both samples into the respective
classes. The numbers nyy, a4y will now usually differ. However, any weighted m
Z10y(§1s~Fu), with Ty = 1, will be subjeot only to the residual within-class binste
insofar as this z is concerned. In practice, different choioes of the weights w, have
been used, e g. sometimes weights directed at minimising the variance of the weighted
difference. ‘F‘t comparison with matching we sssume the weights wy = nyy/n.

4.1.  Performance of the two methods. If sample 1 and reservoir 2 or sample
2 are random eamples from their respective populations, as we have been assuming
throughout, the n,, ny who turn up in the final sample are a random sample from
thoso in their population who fall in class j under either method-matohing or adjust-
ment. Consequently, with the same weights n,y/n, the two methods have tho same
expected residual bias, (An exception is the ooocssional case of adjustment from
m of equal sizes », = n, = n, where we find n, = O in one or
more subclasses, so that subclasses have to be combined to some extent for applica-
tion of the ‘adjustment by subclassification’ method.)

With certain genuinely qualitative classifications it may be reasonable to
assume that any two members of the same subclass are identioal as regards the effect
of this x on y. In this event, both matching and adjustment remove all the biss
due to z, there being no within-class bias. But many qualitative variables like socio-
economic status, degree of aggressiveness (mild, moderate, severe), represent an ordered
classification of an underlying continuous variable x which at present we are unable
to measure accurately. Two members of the same subclass do not have identical
values of z in this event. For such cases, and for a variable like age, we assume the
model .

Yy = n+u{ry)tey i =1,2,353=12 ..,¢ o (40.1)

the regression of y on x bemg the same in both populations, with 7,—7, not depending
on the value of z.

From (4.1.1) the percent reduction in the bias of y due to adjustment by sub-
clagsification of u equals the percent reduction in the bias of ¥. If u(x) = xz, this also
equals the percent reduction in the bias of x. If u(x) is a monotone function of z, &
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division of x into olaeses &t the qusntiles of z will aleo be & division of ¥ into olasses at
the sams quantiles of w. The perosnt reduotions in bias of v and z will nos, however,
be equal, since these depend both on the division points snd on the frequency distri-
butions, whish will differ for « and . The approach adopted by Cochran (1968s) was to
start with the case w(z) = z, with x normal, and then oonsider some non-normal
distributions of 5 to throw some light on the situation with w(z) monotone.

In subolamifioation, the range of x is divided into ¢ classes ot division points
LBy, oue, Zg - Lt fi(2) be the p.d.L's of z in the two populations. The oversll mesns
of z are .

!l—a\.‘n:n

é?fm?%ﬁois- : .

Ny - h {.3....\? whare Py h .«.E
Oger Vs

?Ei!‘? Q-IJL bblﬂr!rﬂaﬂ.&g
Eg.&g?_nfgﬂi

u W (3,y-3y). e (41.8)
Its average valus, the expected residnal bias, is - . |
.. o :
Z Piltu—vy). 4 e (60.3)
gi?«f&iéﬂﬁﬁ%?ﬁ reduction in biss.
mns.:\.:&hﬂ.ginrnlvoss s single parameter it is convenient
to give it the values 0 EOF% and 2 % Expression (4.1.3)
may be rewritten as .
m—w%xislic: | e (4.1.4)
A first-term Taylor expansion about 0, sssuming © small, seems to work well for bisses

of practicsl size, (Coohran, 1968a) and leads to & usefal result obtained in o related
unorrn. From (4.1 ;vﬁoﬂgiiefréﬂi«gg

SRRt |ou§smu%. T e

Egsng Olo 055-392.5 the expeoted inikal
bias is

ZiPAOmO—POmON = —8 £ [Pio) M 1y LD . w1
| - o
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On subtracting (4.1.8) from (4.1.6), the expected proportional reduction in bias is

approximately
. dP,(8) ,de(6) :
b A ! .
75(0) —-ﬁ—‘ %— e (4.1.7)

measured at © = 0, where §(0) = g; = él Py(O)y(O).

In particular, if f,(z) = f(z), fo(z) = flz— ©), the two distributions differing

onlyintheirmem.wohsn%:lud

-

P®) = [fa-O)ds= | fiurés

-2 ('

L = o0
st @ = 0. From (4.1.7), the proportional reduction in biss becomes

with

é RO r_)—f12)). . (618)
If f(z) is the unit normal distribution, (4.1.8) gives
;-':lm-:_.)-ﬂanr/mo) . (419)

for the proportional reduction in bias. Exproesion (4.1.9) has been studied in other
problems by J. Ogawa (1951) and by D. R. Cox (1957). Cox showed that it is 1 minus
the ratio of the average within-class variance to the original variance of z when z is
normal. For our purpose, their calculations provide (i) the optimum choioces of the
P4, (ii) the resulting meximum percent reductions in biss, and (iii) the percent reduc-
tions in bias with equal-sized classea Py = 1/c. For ¢ = 2— 10, the maximum perocent
reductions are at most about 29, higher than those for equal P,y shown in
Table 4.2.1.

TABLE 4.2.1. PERCENT REDUCTIONS IN BIAS WITH EQUAL-81ZED
CLASS IN POPULATION 1. 3 NORMAL

no. of
subelasses ] 3 4 8 [ L ] 10

%redustion  04% 9% S8% 0% 08%  94% 9%

Cealoulations (Cochran, 1868a) of the percent reductions when z follows x?
distributions, ¢ distributions and Beta distributions suggest that the above figures
can be used as a rough guide to what to expect in practice when the classification rep-
resents an underlying continuous z. To remove 809%, 90% and 95%, of the initial
bias, evidently 3, 5, and 10 classes are required by this method.
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8. SIMPLE MOLTIVARIATE GRNBRALIZATIONS

8.1. Parallel linear regressions. We now consider the ceso of many z-
variables, say (z', #®, ..., ), Many of the previous results for ome x vaciable
have o vﬁoﬁ%nﬁn variables, with the p-veetors vy, fis and &y replacing the
scalare y, A and z;. However exoept in the cases whers the adjustment removes
all the bias, the conclusions are-even less sharp then in the univariate case.

The simpleat multivariate case ooours when ngggga
® in both populations

..tl\.+!ue!...*+£ e :::

The regressions of y on z i u?i%ﬁvﬂpg .m_lxl 1&- constant
difference of height

-eals_._au - as - Slblz‘raé.. v (6.1.9)

If (=, aﬁvsﬁogg?ﬂ&nasg this constant diffarence is the trest-
BBn&n.log. 7y—7y From (8.1.1) i pnasgggwss%om
the xy in two samples, o rogsgng!—«ﬁoﬁu%oaﬁ- go:ron.ql.?v—o-

By = mry -y
The expected biss of §,—g, E?aaoBBBur-u e
B — b !J-va : .. (51.3)

ZagfngtgailabsgﬂiﬁggEglu-v!wvo!a
if B0 and (n,—n,) % 0.

~ In'random P, EBDEH gl.l tho bias is

EBalfy—Fo)—(ri—1y) = Miy—Bu(B)). : a 1 &

Formally, the percent reduction in bias is the natursl exteasion of the E«gg
»8!&...3?.._.. [Bm—ny)". . (8.1.8)

Bu «FQE‘EESEE%BDNF; Eggﬂgmr-oi with
Zn(3,) oloser 10 v, in all components than wgis to ny(e.g. (m—Ty) = (1, ~1), (n—Bu(2,))
=i P=(1, 1)), which give initial biss 0 and matched sample bias 1. .

?go&gggﬂ .

hf = f, 12..2-_..2 B

1??555&.;?%#&&3& dﬂnﬂ.n.ﬁn_.xwo_

Eo(f) = = B, for fiy, §,, ;. Thus, for any ;....snaaznasn!.&aa

matohed on x Gucgamusggs—oiaig te is unbiased :
B 7 .....n}nrcx...ltu —r
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3.2. Non-parallel linear regressions. As in the univariate case, the regressions
of y on & may not be parallel. Assume the objective is to estimate (r,—r.) averaged
over some standard population with mean = vector w, (6.g. ns = W, if P, is considered
the standard). From the multivariate version of (3.1.2), assuming Z are the only
confounding variables we have

Eo(ry—73) = py—piy+Bi(Me—m) —Pa(Me—my)". e (320
In random samples §, — ¥, has expeotation u, —u, and thus the initisl bias is
— P =1) +Be(ne—1)".
If n, = n,, this initial bias becomes Py(n,—n,)".

For random samples or samples sclected solely on x
Belgh—s) = sr—patBs(Br— ) —Ba(By— M)’
= Eo(t)=75)+8(2y =) —Bso(By— 7). - 16.2.2)
If ¢ = n,, and sample 1 is & random sample, the biss of §,— ¢, is 8,(n, — Em(Z2,))’ while
the initial biss is Bg(n,—",)". By comparison with (5.1.3) and (8.1.4) it follows that

when population 1 is chosen as the standard the effect of matching on bias reduction
is the same whether the regressions are parallel or not.

Now consider the regression estimate. Since (5.2.2) gives the conditional
bias of §,— g, it would seem reasonable to estimate this bias using the usual within-
sample least squares estimates of B, and @, (snd an estimate of 0, if necessary) and
forming the regression adjusted estimate

fl“!;l-ix(zx-al)l+én(ta-;la)' .. (5.2.3)
which is an unbiased estimate of E,(r,—7,) under the linear regression model. If

MNe = W, and the first sample is random, this estimate is the natural extension of the
univariate result,

91“?:-31(31—31)‘-
If & single summary of the effect of the treatment is not adequate, one could

examinc the estimated effect at various values of & using (5.2.3) where ¥, is replaced
by the values of & of interest.

8.3. Non.inear regressions. If y hes non-linear parallel regressions on z,
expressed by the function g(Z), the initial bias, E,(g{2))— E(g{(x)), depends on the higher
moments of the distributions of Z in P, snd P, (e.g. the covariance matrices €, and
&, if @ is normal) as well ns the means. The large sample limit of the pooled regression
adjusted estimate in random samples is

E\(g(@))— Eylg(®) — (1 — o[ 8, + E,] ("
where the £-th component of the p-vector C is cov,(z'¥'g(x)) -+ covy(s'Fy(x)).
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This quantity, as woll as similar quantities for the oase of parallel, non-linear
regressions, can be obtained analytically for many distributions and regression func-
tions. As far as we know, no work has been done on this problem or the more difficult
one involving matched samples, in which cese the distribution of # in matched samples
may not be analytically tractable. Expanding g{() in s .—.-«_ﬂl-.r.aunﬁaicr
one to expand the limiting residual bias in terms of the momeuts of 2 in rendom end
Eig%ﬂaggilnﬁ%i&zlzggs.
matohed pairs).

8.4. Errors of measurement in z. Asume thet y has parallel linear regres-
sions on the oorrectly measured matching veriables X, that X are the only confound-
g%vpgggil—ggﬂosggeg—o
2= X4u. Heooe

’ o = pu+P(Xy—v) 40y

and the initial bias in rendom sampies is {n,—n,'. Ify hae o liness regression on
the fallible = (e.g. y, X, % are muitivariate normal), let

Wy = s+ PoEy—m—w)+6y

where B(ey|2gy) = 0, E(uy) = v, and §* = X3} alc? z), whare T, is the covariance
matrix of the 2 variables.

>§RQEEI=ESES§SB!RSIB1IE§

on Z changes the initial biss by the smount —@°(; —ny—w+vy)’, and thue the biss
of a regression adjusted estimate is

(P—F )W —n) — P —w)" v (8.4.1)

Some simple results can be obtained for the special case when v, = v, (equally

bissed measuremants in both populstions), X and % are uncorrelated, and the co-

variance matrix onli%gsarogooggkiuaﬁ With

the latter two conditions @° becomes (1--a')-i§. This result and v, = v, imply
that (6.4.1) becomes

ul.TM-l Aln,—ny)

-nusowlslnamnog..ﬁcﬁ-mgnaig adjustment is
" 100/(1+at),
as in the 58 oage, .&93 :Au...a-.oﬂnluou&.s the reliability, which we are

‘nﬂgszgﬂmﬁr:%.d;ggo!&igmog.
the peroent reduction in biss due to matohing on = would be .

Trar BB~ BNy
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Under models different from the above special case, clesrcut results appear
more difficult to obtain, and the percent reduction in bias for regreision adjustment
or matohing is not necessarily between 0 and 100 percent even with v, = v,, X and
4 uncorrelated, and all u¢ independent.

If one knew I, one could form a ‘‘corrected” regression-adjusted ostimate
_that is in large samplee unbissed for 7,—r,. That is, assuming Z and © are uncorre-
lated, form

. —9,—£7 &, pr(z,— 2y .. (6.4.2)
where i‘ is the usual least sqmm estimate of the regression of y on Z, ﬁ, is the esti-

mated within group covariance matrix of  and 7 = £,~E,. In the special case
when Ey = o'z, the eltimate mnphﬂu to tho umlogne of the univariate result if
a® is known

) gt:fa—..(l +anp°
which is unbiased for r,—7,. |

et -

5.5. Omilted confounding mablu Anume that y has parallel regressions
on (2, £) in the populations but that matching and/or adjustment is done on the =
variables alone. Also assume that & and # are the only confounding variables. This
multivariate case is very similar to the univariate one of Bection 3.5 and the multi-
variate analogs of all the formulas follow in an obvious manner. The basic result is
that if 2 has o linear regression on 2, # can be decomposed into z, along & and 2,
orthogonal to 2, and adjustment on Z is aleo adjustment on 2, but does not affeot z,.

6. SOME MULTIVARIATE GENERALIZATIONS OF UNIVARIATE MATCHING METHODS

6.1. Caliper matching. Thus far we have not discussed any specifio multi-
variate matching methods. The obvious extension of caliper matching is to seek in
reservoir 2 & match for each z,y such that |ZAY~zP| < cp for k= 1,2,....,p. This
method is used in practice, the difficulty being the large size of reeervoir needed to
find matches.

The effect of this method on Ew(#,—#,) could be calculated from univariate
results if all 2 were independently distributed in P, (this restriotion will be relaxed
shortly). This follows beoause selection on zyy from P, would not affect the other x
variables, and 8o the percent reduction in the biss of the variate z*! under this mothod
would be the same as that under the univariste caliper matching |z{—249| < ca.
From these p percent reductions, the percent reduction in biss could be caloulated
for any y that is linear in the 2. For example, with p = 2, let B = 0.5 and o303}
= } for =%, while B = 0.25 and o/o} = 2 for z». Then if ¢, = 0.4V/(03+07)/2 and

¢y = 0.8V (o7 +08)/2, the reductions for 2" and z? from Table 2.3.1 are about 969,
aod 77%. That for z'V 422 for instance, is about [(.96)(.5)4-(.77)(.25))/(.78) = 80%,.
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With this spproach, an attempt to salect the ¢, from initial estimates of
7P —9{" and of/of for ' s0 that matching gives the same perosnt reduotion in biss
for each z'* hes some & ieﬂg«‘gegnﬂggoﬁqﬁ when
it is uncertain which z! pnoBonomBmi.E ??%ﬁgg t hold,
Bosguggaw biss for some y's 's linear in . For instanoce, in the preceding

example BnEvEn 19.5 increase the biss for 'V — 2% whoee biss is initially
sero,

. In general of course, the i : 53»538&!:«558@

n Py, but if they are normally"distributed (ar more generally
UoBm-.!. ~mﬂv§§ &Bﬁoi%
=2zH wheo H'H= I e (6.11)

B.E.EED Rag«&-ﬁwngi% Hence, sssuming (1) @ normal

in Py, (3) » farge simpls from P, so that A is esmentislly known and all matches oan
be obteined, and (8) the caliper matohing method defined above is used on the & = =H
variables, Table 3.3.1 can be used to caleulate the percent reduction in bias for each
of the s, Also, from these p percent reduotions in biss, the percent reduction in

gg?o&%&qgwgggaga » such as any z% or azy
y that is linear in

We Egiagsggﬁigrsg & reasonable
- generalization of wnivariate caliper matohing to use in practice. Caliper matching
on the original = variables defines & fixed p-dimensional “rectsngular’ neighborhood
about’ each ¥, in which an acceptable match can be found. If caliper matohing is
used on the z-variables, & neighborhood is defined about each 2y that in general is

no longer a simple rectangle with sides perpendioular to the x-variables but & p-dimen-
sional parallelopiped whoee sides are not perpendicular to the z-variables but to the
p linear combinations of the z-variables cosresponding to the #. Sinee the original
choioe of a rectangular neighborhood (0.g. rather than & circular one) was merely for
convenionce, the neighborhood defined by the & calipers should be just as satisfactory.

6.3. Categorical maicking. As s secopd example of & commonly used matoh-
ing method for which we can apply the univariate results, sssume the categorioal
matching method of Bection 4 is used with cy categaries for each matohing variable,
the final matoh for each member of the first sample being chosen from the members
of the second sample lying in the same categorics on all variables. If this matching
is pecformed on the transformed varisbles s given in (6.1.1), normality is sasumed,
and the reservoir e large, Table 4.2.1 can be used to caloulate the percent redaotion
in bias of each £ in the final matched sample, and thus of each = or any y linear in
®. Actually Table 4.2.1 requires tho ratio of varisnces to be 1 and B moderate or
small but could be extended to include more cases.

. By adjusting the number of categories nssd per matohing varisble z'* as a
function of B,(xM)— B (') and var,(s'®)/var,(s#?) one oan obtain approximately the
same peroent reduotion in bias of any y thas is linear in .

£.
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6.3. Discriminant matching. As a final example of multivariate matching
methods for which some of the previous univariate results are applicable, asgume the
transformation in (6.1.1) will be used with H defined so that (3, —¥,)H oz (1,0, ..., 0).
Univariate matches are then obtained on z'*!, the best linear -liscriminant with respect
to the E, inner product, as suggested by Rubin (1970). Nc'« with this method there
is no (mean) bias orthogonal to the discriminant (ieBg®’ = Eg'®, k=2, ..., p);
hence, if the z are normal in P, (so that z'¥ and (z'%. ..., z'") are independent), the
percent reduction in bias for any linear function of the Z equals the percent reduction
in bias of 21

Tables 2.3.1, 2.5.1, 2.4.1, or 4.2.]1 can then be used to calculate the percent
reduction in bias for each z*’ when univariate caliper, mean, nearest available or cate-
gorical matching is used on the disoriminant. In using theee tables a}jot is the ratio
of the z'U' variances in P, and P,, (2,—2)E;' T, T3\ (2, ~2,) /(2,— 2,)Z3'(2,— 2,)',
and B is the number of standard deviations between the means of 2! in P, and
P, (2,—2,)E:'(2,—2,)/V{(0i+0o8). Note that for many mstching variables, this B
could be quite large even if the means of each matching varisble are moderately
similar in P, and P,.

Discriminant matching has several appesling properties :
(1) it is easy to control the nizes of the final matched samples to be exactly
of size n;

(2) if  is approximstely normal in P, the method should do a good job of
reducing bias of any y linear in 2, even for & modest reservoir; this follows
from an examination of Tables 2.4.1 and 2.3.1 ;

(3) if = is approximately normal in both P, and P, with &, ~ E,, pair match-
ing should do & good job of reducing the bias of any type of regression
when the reservoir is large and/or when combined with regression adjust-
ment.

The third point follows from the fact that if 2 is normal in P, and P, with &, = Z,,
orthogonal to the discriminant the distributions of the matching variables are identical
in P, and P, and unaffected by the matching. Hence, for any y, all bias is due to the
different distributions of the discriminant, and Tables 3.2.1-3.2.3 indicate that with
moderate r, matohing and regression adjustment remove much of this bias; also when
r— oo the distributions of all matching variables will be the same in the matched
samples if nearest available matching is used and 2 in normal with , = £,.

In addition, if one had to choose one lincar combination of the x along which
a non-linesr y is changing most rapidly, and thus on which to obtain close pair matches.
the discriminant seems reasonable since the matching variables were presumably
chosen not only because their distributions differ in P, and P, but also because they
are correlated with y.

4“3
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Of course, the joint -distributions of matching varisbles are not assured to
be similar in the matched samples, as they would be with pair matohes having tight
calipers or with o large number of categaries using the methods of Bections 0.1 or 8.2.
However, the ability to find tight pair matohes on all matching variables in & highly
multivariste situation seems dubious sven with moderately large r. The implications
of these points require study.

In practice the discriminant is never known exactly. However, symmetcy
arguments (Rubin, 18730) show that under normality in P,;, matching on the sample-
based diseriminant still yields the ssme peccent reduction in expeoted bias for each z#'.

6.4. Other maiching methods, Thero are two kinds of problems with the
preceding matching methods. Firet, for thoee utilising al} the # it is diffoult to control
the sige of the final sample of matches. Thus with the caliper or oategorical methods
litthe is known about the aotual reservoir sise needed to be confident of obtaining a
matoh for each momber of the first sample, although an argumont suggests that the
ratio of reservoir to sample size for p variables i.i.d. in P, and P, is roughly the p-th
power of the ratio for one variable. The use of caliper matohing to obtain mstohed
samples in & practioal problem is described in Althauser and Rubin (1970).

When using mean and nesrest available matohing on the discriminsnt it is sasy
to control the final matohed sample to have sise n. However using discriminant
matohing, individual matched peirs are not olose on all varisbles and they rely on
specific distributional sssumptions to insure that the ssmples are well-matohed, even
af r=p Q0.

An alternative is to try to define matching methods more analogous to the
univariate noarest available matching method using some definition of “distance”
between ®,; and 3. We might choose the » matohes by ordering the ®#,; in some way
(e.g. randomly) snd then assigning as a match the nearest 2,; sa defined by some multi-
variate distance measure. Such methods will be called nearest wvailable metric
matohing methods.

A simple class of metrics is defined by an inner product matrix, D, so that the
distanoe from 2,4 10 &y is (®yy—Pyy) D(®y—dy)’. Rather obvious choices for D are
I or I3 yielding the Mahalanobis (1927) distance between.Z,; snd &,y with respect
to either inner product. If X, cB, and 2 is sphevionl, symmetry implies that
either Mahalanobis distance yields the same percent reduction in biss for each 2%.

More generally, unpublished symmetry arguments (Rubin, 19730) show that
for Z spberical and an ioner product metrio, the same percent reduction in bias is ob-
tained for each x# if and only if

(1) The P; covarience matrices of ® orthogonal to the discriminants ure

proportional : -

Z = t'x- ;;' (‘!\“W‘('x“'li) =c [zl“f:! (‘_t“'a)'(?x"i)]
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where s} = the variance of discriminant in Py = (9, — 9,57 (9, ~n,)’. (Note that this
implies the discriminants with respect to the P, and P, inner producta are
proportional).

(2) The inner product matrix D used for metching is proportional to [l:,+
k(n,—¥3)'(n,—ny)]~* with & > 0 (if & = 0 or , the inverse is & generalized inverse,
Rao, 1973).

The choice of k = @ yields matching along the discriminsnt, & = 0 yields matching
in the space orthogonal to the discriminant, k& = #;* yields matching using the P,
Mahalanobis distance and k = cs3t yields matching using the P, Mahalanobis distance.
Symmetry arguments also show that under normality and condition (1), using the

sample eatimates of E_ and (n,— v,) gives the same poment reduction in bias for
each z'&),

There sre of course other ways to define distance between z,, and z,,. for
example by the Minkownln metric

[ .l;l‘ |zt —a4'|” ]‘m for some y > 0.

Nothing seoma to be known about the performance of such mtchmg methods.

A final class of methods that has not been explored might be described as
sample metric matohing. The simplest example would be to minimize distance between
the means Z, and 2, with respect to a metric. More interesting and robust agsinst
non-linearity would be to minimize & meesure of the difference between the empirical
distribution functions.

7.1. Summary comments. This review of methods of controlling bias in
observational studies has conoentrated on the performance of linear regression adjust-
ments and various matohing methods in reducing the initial bias of y due to differences
in the distribution of confounding variables, z, in two populations; this seemed to us
the most important aspect in obeervationsl studies. We have not comsidered the
effects of these techniques on increasing precision, sa becomes the focus of interest in
randomized experiments.

If the z variables are the only confounding variables, linear regreesion adjuat-
ment on random samples removea all the initial bias when the (y, z) relations are
linsar and parallel. With only one x and parallel monotonio curved relations of the
types examined, linear adjustment on random samples again removes essentislly all
the bias if o} = o} and the distributions of z are symmetric, but may perform very
erratioally if o3/a} is not near 1, or if the distributions of 2 are asymmetric.

Exocept in studies ffom past records, like the Cornell studies of the effectivences
of seat belts in auto accidents (Kihlberg and Robinson, 1068) matching must usually be
performed before y has been measured. A drawback is the time §nd frustration involved

e
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in seaking matches from the avallable reservoirs, bus this will be alleviated if somputer
methods like the ‘nearest avallable' are extended to more than one z. The appeal
of matohing lies in the simplicity of the concept and the intuitive ides thet o tight
matching should wark well whether the relation betwosn y sad z is linear or curved.
In our studies with cne z, however, the matching methods alone did not perform as
1&85?%&5‘-5? ) relation, or & monotonio non-linear
relation with o} = 0§ and z symmeteio. Regression adfustment on matched samples
Egiﬁggﬂﬁgggigolglgg
rendom samples in the non-lincar cese. If the (y,») relation is non-linesr and o}
and o} are very different, matohing followed by regression adjustment on matched
pairs pecforms best. Monte Carlo %85% &?»lb-u«ﬂﬁotuo

z would be helpful.

ggi-&ér%!!"?%
ing alone whea z is continuous and only a moderate reservoir is available. In & similar
comparison with more emphasis on precision, uﬁ-&ﬂ.zwggi
was more effective than matohing in this respect aleo. However, it appears that the
E&gg}.i&ug SBDEE is generally
superior to either method alone. "

E. vgiggi 81«.&..5!3 v« n.ﬁ&...

has been done. Even with univariate z thess inolude research on the sises of reees-
voirs 8&&8?%8 oategorical matches, on the effectivences of the

commonly used technique of inoomplete matching in which members of sample 1
"L that lack good matches are discarded, and in methods of relaxing the restrictive as-

sumptions of linearity and normality as suggested in Section 3.3 (and Beotion 5.8 for
the multivariate csse). For the case of & g&%ﬁ?ﬂ t varisble the only

- work seems to be that of MoKinlay (1973).

In Seotions 6.1-6.4 we have suggestod several a_mql.gog :.rt
%%g 48.« little is known about their effectiveness. In this conneo-
tion a survey of the commonly used methods of control, ressevoir sines and number
of variables that oocur in applications would be useful in guiding the soope of further
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